2023

60. “Extracellular electron uptake from a cathode by the lactic acid bacterium Lactiplantibacillus plantarum,” S. Tejedor-Sanz, S. Li, B. Kundu, C. M. Ajo-Franklin, Frontiers in Microbiology (2023)

59. “Creation of a Self-Powered, Real-Time Sensor for Therapeutics in Blood: from Protein Engineering to Electronic Integration,” R. Cai, C. Ngwadom, R. Saxena, J. Soman, C. Bruggeman, D. Hickey, R. Verduzco, C. M. Ajo-Franklin, Research Square, in review at Nature Portfolio (2023)

58. “Selective bioelectronic sensing of pharmacologically relevant quinones using extracellular electron transfer in Lactiplantibacillus plantarum,” S. Li, C. De Groote Tavares, J. G. Tolar, C. M. Ajo-Franklin, Biosensors and Bioelectronics (2023)

57. “Lactiplantibacillus plantarum uses ecologically relevant, exogenous quinones for extracellular electron transfer,” E. T. Stevens, W. Van Beeck, B. Blackburn, S. Tejedor-Sanz, A. R. M. Rasmussen, E. Mevers, C. M. Ajo-Franklin, M. L. Marco, bioRxiv, accepted at mBio (2023)

2022

56. “The Differing Roles of Flavins and Quinones in Extracellular Electron Transfer in Lactiplantibacillus plantarum,” J. G. Tolar, S. Li, & C. M. Ajo-Franklin, Applied and Environmental Microbiology (2022)

55. “Real-time bioelectronic sensing of environmental contaminants,” J. T. Atkinson, L. Su, X. Zhang, G. N. Bennett, J. J. Silberg & C. M. Ajo-Franklin, Nature (2022)

54. “A Framework for the Systematic Selection of Biosensor Chassis for Environmental Synthetic Biology,” S. Sridhar*, C. M. Ajo-Franklin, C. A. Masiello, ACS Synthetic Biology (2022)

53. Determinants of multiheme cytochrome extracellular electron transfer uncovered by systematic peptide insertion,” I. Campbell, J. T. Atkinson, M. D. Carpenter, D. Myerscough, L. Su, C. M Ajo-Franklin, J. J. Silberg*, Biochemistry (2022).

52. Listeria monocytogenes requires cellular respiration for NAD+ regeneration and pathogenesis,” R. Rivera-Lugo, D. Deng, A. Anaya-Sanchez, S. Tejedor-Sanz, V. M. Reyes Ruiz, H. B. Smith, J-D. Sauer, E. P. Skaar, C. M Ajo-Franklin, D. A. Portnoy, S. H. Light*, eLife, 11, e75424 (2022).

51.A de novo matrix for macroscopic living materials from bacteria,” S. Molinari, R. F. Tesoriero Jr., D. Li, S. Sridhar, R. Cai, J. Soman, K. R. Ryan, P. D. Ashby, C. M. Ajo-Franklin*, Nature Communications, 13, 5544 (2022).

50. Precision Engineering of 2D Protein Layers as Chelating Biogenic Scaffolds for Selective Recovery of Rare-Earth Elements,“ R. M. Pallares, M. Charrier, S. Tejedor-Sanz, D. Li, P. D. Ashby, C. M. Ajo-Franklin*, C. Y. Ralston*, R. J. Abergel*, Journal of the American Chemical Society, 144, 854–861 (2022).

49. Solution-Deposited and Patternable Conductive Polymer Thin Film Electrodes for Microbial Bioelectronics,” C.-P. Tseng, F. Liu, X. Zhang, P-C. Huang, I. Campbell, Y. Li, J. T. Atkinson, C. M. Ajo-Franklin, J. J. Silberg, R. Verduzco*, Advanced Materials , 34, e2109442 (2022).

48. Extracellular electron transfer increases fermentation in lactic acid bacteria via a hybrid metabolism,” S. Tejedor-Sanz‡, E. T. Stevens‡, S. Li, P. Finnegan, J. Nelson, A. Knoessen, S. H. Light, C. M. Ajo-Franklin*, and M. L. Marco*, eLife, 11:e70684 (2022).

2021

47. Engineering Wired Life,” L. J. Bird, Biki B. Kundu, Tanya Tschirhart, Anna D. Corts, Lin Su, J. A. Gralnick, C. M. Ajo-Franklin, and S. M. Glaven*, ACS Synthetic Biology, 10, 2808–2823 (2021).

46. Bottom Up Approaches to Living Materials: Challenges and Future Directions,” S. Molinari*, R. F. Tesoriero Jr, and C. M. Ajo-Franklin*, Matter, 4, 3095-3120 (2021).

45. A CMOS Multi-Modal Electrochemical and Impedance Cellular Sensing Array for Massively Paralleled Exoelectrogen Screening,” S. R. Kumashi, D. Jung, J. S. Park, S. Tejedor-Sanz, S. I. Grijalva, A. Wang, S. Li, H. C. Cho, C. Ajo-Franklin, H. Wang, IEEE Transactions on Biomedical Circuits and Systems , 15, 221-234 (2021).

44. Controlled and Stable Patterning of Diverse Inorganic Nanocrystals on Crystalline Two-Dimensional Protein Arrays,” V. Mann, F. Manea, N. Borys, C. M. Ajo-Franklin, B. E. Cohen, Biochemistry, 60, 1063-1074 (2021).

43.Engineering high-yield biopolymer secretion creates an extracellular protein matrix for living materials,” M. T. Orozco-Hidalgo‡, M. Charrier‡*, N. Tjahjono, D. Li, S. Molinari, K. R. Ryan, P. D. Ashby, B. Rad, C. M. Ajo-Franklin*, mSystems, 6, e00903-20 (2021). ‡Co-first authors *Co-corresponding authors

2020

42. A hybrid cyt c maturation system enhances the bioelectrical performance of engineered Escherichia coli by improving the rate-limiting step,” L. Su, T. Fukushima, C. M. Ajo-Franklin, Biosensors & Bioelectronics, 165,  112312 (2020).

41. Precise electronic control of redox reactions inside Escherichia coli using a genetic module,” M. Baruch, S. Tejedor-Sanz, L. Su, C. M. Ajo-Franklin, PLOS One (2021).

40.Programmable assembly of 2D crystalline protein arrays into covalently stacked 3D bionanomaterials,” F. Manea, V. Garda, B. Rad, C. M. Ajo-Franklin, Biotechnology & Bioengineering, 117(4), 912-923 (2020).

39. Modifying cytochrome c maturation can increase bioelectronic performance of engineered Escherichia coli,” L. Su, T. Fukushima, A. Prior, M. Baruch, T. Zajdel, C. M. Ajo-Franklin, ACS Synthetic Biology, 9 (1), 115-124 (2020).

2019

38. An elusive electron shuttle from a facultative anaerobe,” E. Mevers, L. Su, G. Pishchany, M. Baruch, J. Cornejo, E. Hobert, E. Dimise, C. M. Ajo-Franklin, J. Clardy, eLife, 8, e48054 (2019).

37.Reaching full potential: bioelectrochemical systems for storing renewable energy in chemical bonds,” L. Su, C. M. Ajo-Franklin, Current Opinion in Biotechnology, 57, 66-72 (2019).

36.Engineering the S-layer of Caulobacter crescentus as a Foundation for Stable, High-Density, 2D Living Materials,” M. Charrier, D. Li, V. Mann, L. Yun, S. Jani, B. Rad, B. Cohen, P. Ashby, K. Ryan, & C. M. Ajo-Franklin, ACS Synthetic Biology, 8, 181–190 (2019)

*Featured in Nature Chemical Biology *Alternate cover article

2018

35. PEDOT:PSS-based Multilayer Bacterial-Composite Films for Bioelectronics” T. J. Zajdel, M. Baruch, G. Méhes, E. Stavrinidou, M. Berggren, M. M. Maharbiz, D. T. Simon, & C. M. Ajo-Franklin, Scientific Reports, 8, 15293(2018).

34. A flavin-based extracellular electron transfer mechanism widespread in gram-positive bacteria S. H. Light, L. Su, J. A. Cornejo, R. Rivera-Lugo, J. A. Cornejo, A. Louie, A. T. Iavarone, C. M. Ajo-Franklin, & D. A. Portnoy, Nature, 562, 140–144 (2018).

33. Towards patterned bioelectronics: Facilitated immobilization of exoelectrogenic Escherichia coli with heterologous pili.” M. Lienemann, M. A. TerAvest, J.-P. Pitkänen, I. Stuns, M. Penttilä, C. M. Ajo-Franklin, & J. Jäntti, Microbial Biotechnology, 11, 1184-1194 (2018).

32. Nanoscale membranes that chemically isolate and electronically wire up the abiotic/biotic interface. J. A. Cornejo, H. Sheng, E. Edri, C. M. Ajo-Franklin, and H. Frei, Nature Communications, 9, 2263(2018).

31. High pCO2-induced exopolysaccharide-rich ballasted aggregates of planktonic cyanobacteria could explain Paleoproterozoic carbon burial. N. Kamennaya, M. Zemla, L. Mahoney, L. Chen, E. Holman, H.-Y. Holman, M. Auer, C. M. Ajo-Franklin, and C. Jansson, Nature Communications, 9, 2116 (2018).

2017

30. A portable bioelectronic sensing system (BESSY) for environmental deployment incorporating differential microbial sensing in miniaturized reactors.” A. Y. Zhou, M. Baruch, C. M. Ajo-Franklin, and M. M. Maharbiz. PLOS ONE , 12, e0184994 (2017).

28. The Molecular Basis for Binding of an Electron Transfer Protein to a Metal Oxide Surface. T. Fukushima, S. Gupta, B. Rad, J. A. Cornejo, C. J. Petzold, L. J. G. Chan, R. A. Mizrahi, C. Y. Ralston, and C. M. Ajo-Franklin, Journal of the American Chemical Society , 139, 12647–12654(2017).

28.Engineering Thermophilic Microorganisms to Selectively Bind Strategic Metals in Low Temperature Geothermal Brines M. Charrier and C. M. Ajo-Franklin, PROCEEDINGS, 42nd Workshop on Geothermal Reservoir Engineering, SGP-TR-212(2017).

27. “A synthetic biology approach to engineering living photovoltaics.” N. Schuergers, C. Werlang, C. M. Ajo-Franklin and A. Boghassian, Energy & Environmental Science, 10, 1102-1115 (2017).

2016

26. “Membrane Permeabilization by Conjugated Oligoelectrolytes Accelerated Whole-Cell Catalysis.” C. Catania, C. M. Ajo-Franklin, and G. C. Bazan, RSC Advances, 6, 100300-100306 (2016).

25. “CymA and exogenous flavins improve extracellular electron transfer and couple it to cell growth in Mtr-expressing Escherichia coli.” H. M. Jensen, M. A. TerAvest, M. K. Kokish and C. M. Ajo-Franklin, ACS Synthetic Biology, 5, 679-688 (2016).

24. Transforming exoelectrogens for biotechnology using synthetic biology. M. A. TerAvest and C. M. Ajo-Franklin, Biotechnology & Bioengineering, 113, 687–697 (2016).

2015

23. Recovery of critical metals using biometallurgy. W.-Q. Zhuang, J. P Fitts, C. M. Ajo-Franklin, S. Maes, L. Alvarez-Cohen, and T. Hennebel, Current Opinion in Biotechnology, 33, 327–335 (2015).

22. Crossing Over: Nanostructures that Move Electrons and Ions Across Cellular Membranes C. M. Ajo-Franklin, and A. Noy, Advanced Materials, 27, 5797-5804 (2015).

*Cover article

21. Ion-specific control of the self-assembly dynamics of a nanostructured protein lattice. B. Rad, T. K. Haxton, A. Shon, S.-H. Shin, S. Whitelam, and C. M. Ajo-Franklin, ACS Nano, 9, 180–190 (2015).

*highlighted in LBL Today, Materials Today

20.Bioelectronic light-gated transistors with biologically-tunable performance.” R. Tunuguntla, M. A. Bangar, K. Kim, P. Stroeve, C. P. Grigoropoulos, C. M. Ajo-Franklin, A. Noy. Advanced Materials, 27, 831–836 (2015).

*Cover Article

19.Osmotically-Driven Transport in Carbon Nanotube Porins,” K. Kim, J. Geng, R.Tunuguntla, L. Comolli, C. Grigoropoulos, C. M. Ajo-Franklin, A. Noy, Nanoletters, 14, 7051–7056 (2015).

2014

18. Stochastic transport in carbon nanotube porins in lipid bilayers and cell membranes. J. Geng, K. Kim, J. Zhang, A. Escalada, R. Tunuguntla, L. R. Comolli, F. A. Allen, A. V. Shnyrova, K. Rho, D. Munoz, Y. M. Wang, C. P. Grigopoulous, C. M. Ajo-Franklin, V. Frovol, and A. Noy. Nature, 514, 612-615 (2014).

17. Probing the Dynamics of the Proton-Motive Force in Escherichia coli. T. J. Zajdel, M.A. TerAvest, B. Rad, C. M. Ajo-Franklin, and M. M. Maharbiz. Proceedings of the 2014 IEEE Sensors Conference(2014).

16. The Mtr pathway of Shewanella oneidensis MR-1 couples substrate utilization to current production in Escherichia coli.” M. A. TerAvest, T. J. Zajdel, and C. M. Ajo-Franklin, ChemElectroChem 1, 1874-1879(2014).

15. Faster-than-anticipated sodium or chloride diffusion across lipid bilayers in vesicles.” M. Megens, C. E. Korman, C. M. Ajo-Franklin, D. A. Horsley. Biochimica et Biophysica Acta – Biomembranes, 1838, 2420–2424 (2014). Biochimica et Biophysica Acta (BBA)-Biomembranes 2014 Megens M

2013

14. Lipid composition can influence orientation of proteorhodopsin during reconstitution into proteoliposomes. R. Tunuguntla, M. Bangar, K. Kim, P. Stroeve, C. M. Ajo-Franklin, A. Noy, Biophysical Journal, 105, 1388-1396 (2013). Biophys J 2013 Tunuguntla R

13. “Nanopore-spanning membranes on silicon nitride that seal and selectively transport ions.” C. E. Korman, M. Megens, C. M. Ajo-Franklin, D. A. Horsley, Langmuir, 29, 4421 (2013).Langmuir 2013 Korman CE

12. Tuning promoter strengths for improved synthesis and function of electron conduits in Escherichia coli.” C. P. Goldbeck, H. M. Jensen, M. A. TerAvest, N. Beedle, Y. Appling, M. Hepler, G. Cambray, V. Mutalik, L. T. Angenent, C. M. Ajo-Franklin.ACS Synth. Biol., 2(3), 150-9 (2013).

*Cover article [GoldbeckCP_ACSSynBio_2013]

2012

11. Cyanobacteria as Biocatalysts for Carbonate Mineralization,” N. Kamennaya, C. Ajo-Franklin, T. Northen, C. Jansson,  Minerals, 2, 338-364 (2012).

10. Dual-emitting quantum dot/quantum rod-based Nanothermometers with enhanced response and sensitivity in live cells,” A. E. Albers, E. M. Chan, P. M. McBride, C. M. Ajo-Franklin, B. E. Cohen, and B. A. Helms, Journal of the American Chemical Society, 134, 9565-8 (2012) [AlbersAE_JACS_2012]

2010

9. Engineering of a synthetic electron conduit in living cells. H. M. Jensen, A. E. Albers, K. Malley, Y. Y. Londer, B. E. Cohen, B. A. Helms, P. Weigele, J. T. Groves, C. M. Ajo-Franklin, Proceedings of the National Academy of Sciences, USA ,107, 19213-19218 (2010). [JensenHM_PNAS_2010]*highlighted in Nature, This Week in PNAS; Today at LBL; article in C&E News

8. A synthetic circuit for selectively arresting daughter cells to create aging populations. B. Afonso, P. A. Silver, C. M. Ajo-Franklin, Nucleic Acids Research, 38, 2727-2735 (2010). [AfonsoB_NuclAcidsRes_2010]

2009

7. Standard measurement kits for characterizing BioBrick promoters and ribosome binding sites.” J. R. Kelly, A. Rubin, C. M. Ajo-Franklin, J. Cumbers, M. Czar, K. DeMora, J. Lucks, D. Monie, D. Endy, Journal of Biological Engineering, 3, 4 (2009). [KellyJR_JBiolEngineer_2009]

2008

6. Caged quantum dots. G. Han, T. Mokari, C. Ajo-Franklin, B.E. Cohen. J. Am. Chem. Soc., 130, 15811-15813 (2008). [HanG_JACS_2008]

2007

5. Rational design of memory in eukaryotic cells. C. M. Ajo-Franklin, D. A. Drubin, J. A. Eskin, E. P.S. Gee, D. Landgraf, I. Phillips, P. A. Silver, Gene Dev., 21, 2271-2276 (2007). [AjoFranklin_GenesDev_2007]

2005

4.Probing the structure of supported membranes and tethered oligonucleotides by fluorescence interference contrast microscopy. C. M. Ajo-Franklin, C. Yoshina-Ishii, S. G. Boxer, Langmuir, 11, 4976-83 (2005). [AjoFranklin_Langmuir_2005]

3. “Variable Incidence Angle Fluorescence Interference Contrast Microscopy for z-imaging single objects.” C. M. Ajo-Franklin, P. V. Ganesan, S. G. Boxer, Biophys. J., 89, 2759-2769 (2005). [AjoFranklin_BiophysJ_2005]

2004

2. Patterned supported lipid bilayers and monolayers on PDMS. P. Lenz, C. M. Ajo-Franklin, S. G. Boxer, Langmuir, 20, 11092-11099 (2004). [LenzP_Langmuir_2004]

2001

1. “High refractive index substrates for fluorescence microscopy of biological interfaces with high z contrast.” C. M. Ajo-Franklin, L. Kam, S. G. Boxer, Proc. Natl. Acad. Sci. USA, 98, 13643-13648 (2001). [AjoFranklin_PNAS_2001]